TEMA 1: ORIGEN Y TIPOS DE MAGNETISMO

Tema 1a: Aspectos previos

Tema 1b: Origen del Momento Magnético

Tema 1c: Magnetismo de electrones localizados: Diamagnetismo orbital y

Paramagnetismo de Curie

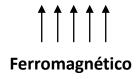
Tema 1d: Magnetismo Intenso: Canje y orden magnético

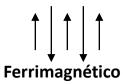
Tema 1e: Magnetismo de electrones deslocalizados

Tema 1d:

- Introducción: Ferromagnetismo y Ferrimagnetismo
- Campo molecular y orden magnético
- Interacciones: Interacción dipolar magnética e interacción de canje

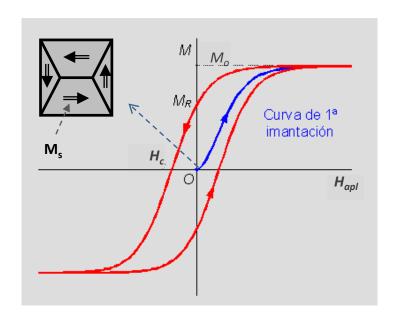
Magnetismo intenso





- ✓ Imanación espontánea, M_s, a H=0 (prop. intrínseca).
- ✓ Se pueden imanar a saturación con bajos H_{apl}.
- ✓ $M_s \sim M_o$ (imanación de saturación).
- ✓ Temperatura de orden magnético (de Curie): T_c.

- ✓ Histéresis magnética (desaparece T>T_C).
- ✓ Presencia de dominios magnéticos.
- ✓ Fuertes interacciones de canje entre los μ_{atm} .
- ✓ ∃ direcciones de fácil imanación "Ejes Fáciles".

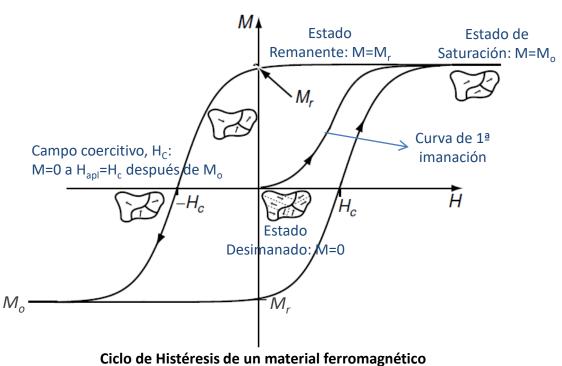


Dominios magnéticos
 Regiones ~μm donde los momentos magnéticos están ordenados separadas por la "pared de dominio".



Dominios magnéticos

Histéresis magnética (James Ewing en 1981)
 Respuesta irreversible y no lineal de la imanación de un FM a un H_{apl}.



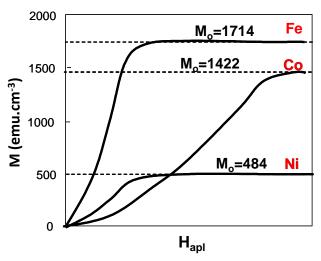
Proceso de imanación: Multidominio ⇒ monodominio $\mathbf{H}_{\mathsf{apl}}$ a) M=0 b) M>0 d) $M=M_s\cos\theta$ d) $M=M_s$ Con M_s el valor de M dentro de un dominio (M_s~M_o en un FM).

Imanación de saturación, M_o

- \checkmark A medida que aumenta H_{apl} ⇒ aumenta la imanación hasta llegar al valor de saturación, M_o .
- ✓ En saturación todos los momentos magnéticos están alineados con el campo.
- ✓ M_o depende solo de la magnitud de los momentos magnéticos (propiedad intrínseca).
- ✓ El valor de campo para el cual se alcanza la saturación, H_{sat} , depende de la estructura.
- ✓ M₀ no depende de la microestructura, sólo de los materiales y las fases presentes.

$$M_o \sim n~\mu_{~at}$$
 $\mu_{~at} \sim \mu_{~B} \sim 10^{-23} J.~T^{-1}$ $n \approx 10^{29}~{\rm átomos~m^{-3}}$ $M_o = n\mu_{\rm B} \approx 1~{\rm T}$

Material	M ₀ (10 ⁶ A.m ⁻¹)	M _s (T)
Iron	1.71	2.1
Cobalt	1.42	1.78
Nickel	0.48	0.60
78 Permalloy (78% Ni, 22% Fe)	0.86	1.08
Supermalloy (80% Ni, 15% Fe, 5% Mo)	0.63	0.79
Metglas 2605 (Fe ₈₀ B ₂₀)	1.27	1.59
Metglas 2615 (Fe ₈₀ P ₁₆ C ₃ B ₁)	1.36	1.71
Permendur (50% Co, 50% Fe)	1.91	2.40
Fe ₆₅ Co ₃₅	1.95	2.45



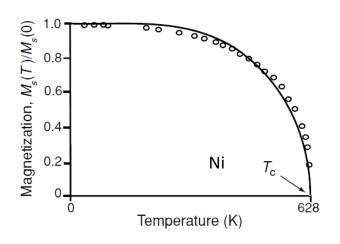
• Temperatura de Curie

 $Def \Longrightarrow Temperatura \ a \ la \ cual \ la \ M_s \ debida \ al \ alineamiento \ de \\ los \ \mu_{atm} \ en \ los \ dominios \ cae \ precipitadamente \ a \ cero.$

- ightharpoonup T>T_C \Rightarrow M_s(T)=0.
- $ightharpoonup T< T_C \Rightarrow M_s(T)$ es reversible.

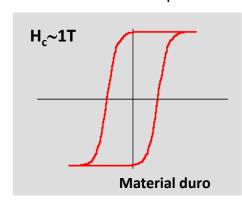
$$T_{C,Ni}$$
 = 628 K ; $T_{C,Fe}$ = 1044 K ; $T_{C,Co}$ = 1388 K (elemento con mayor T_C)

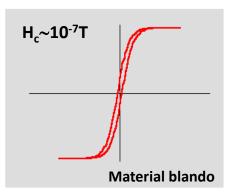
 $M_s(T)/M_s(0)$ vs T/TC es una curva universal \forall FM.



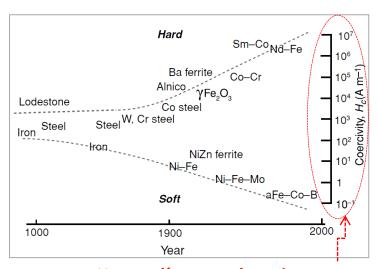
Campo coercitivo, H_c

Def \Rightarrow Campo inverso que hay que aplicar para que M vuelva a ser nula después de la saturación. Prop. extrínseca.





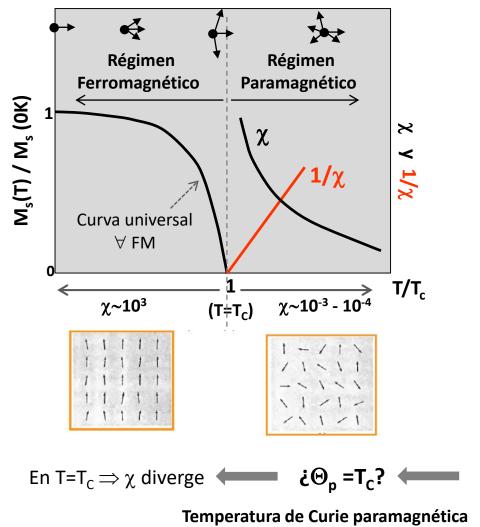
El área encerrada por el ciclo representa la pérdida de energía por ciclo (pequeña para materiales blandos).

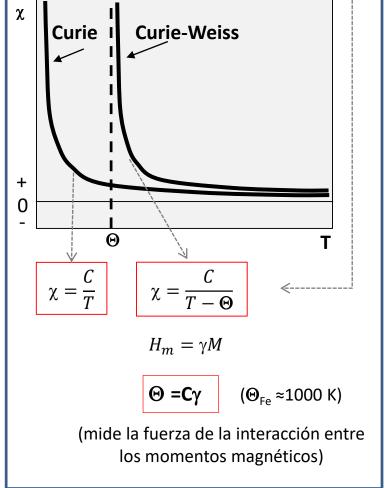


¡¡¡Hoy en día se puede variar en 8 órdenes de magnitud!!!

^{*}Estrictamente hablando, H_C se refiere al campo que anula B y H_{Ci} (campo coercitivo intrínseco) al que anula M.

Ferromagnético vs Paramagnético





Material paramagnético

CAMPO MOLECULAR Y ODEN MAGNÉTICO

 Pierre Weiss (1907) → explica el comportamiento de los materiales FM en términos de un enorme "Campo Molecular" interno, proporcional a la imanación:

$$H_m = \gamma M$$
 $\gamma >> 1$: Coeficiente del campo molecular ($\gamma \sim 10^3$). $H_m \sim 10^9 Am^{-1} (B_m \sim 10^3 T)$

- Este campo también actúa a T < $T_c \Rightarrow$ los FM se "auto-imanan" espontáneamente por la acción de H_m .
- Un FM sería como un paramagnético con un H_m interno muy grande ($\Theta \sim 1000$ K $\Rightarrow \gamma >>$).
- Extiende la teoría del paramagnetismo de Langevin suponiendo que el campo aplicado se remplaza por la suma del campo aplicado más el campo molecular: $H_{apl} + H_m$
- El H_m no existe realmente pero es una ayuda para describir el efecto de la interacción de Coulomb en el marco mecánico-cuántico:

$$H_{ex} = -2\sum_{i < j} J_{ij} \vec{S}_i \vec{S}_j$$
 $J_{ij} > 0 \Rightarrow$ Orden FM en 3D

• Weiss también sugirió la \exists de **dominios magnéticos** en los cuales unos 10^{12} - 10^{18} μ_{atm} están alineados entre sí tal que la imanación está prácticamente saturada a H_{apl} = $0 \rightarrow$ Imanación espontánea. La dirección de la imanación cambia de un dominio a otro.

Dominios dónde la imanación neta se cancela

H_{apl} grande. M=M_o

CAMPO MOI FCUI AR

Aplicamos las ideas de Weiss al modelo cuántico del paramagnetismo: Teoría de Brillouin

$$H_{Tot} = H + H_m = H + \gamma M$$

1- Caso en que H=0
$$\Rightarrow M = M_s \Rightarrow H_{Tot} = H_m = \gamma M_s$$

$$\frac{M_s}{M_o} = B(J, a') = \frac{2J+1}{2J} \coth \frac{2J+1}{2J} a' - \frac{1}{2J} \coth \frac{a'}{2J} \qquad a' = \frac{\mu_{z,max}B}{k_B T} = \frac{g_J \mu_B J B}{k_B T}$$

$$M_s \text{ (imanación espontánea a H=0)} \tag{1}$$

 M_s (imanación espontánea a H=0)

$$a' = \frac{\mu_{z,max}B}{k_BT} = \frac{g_J \mu_B JB}{k_BT}$$

$$M_o = n\mu_{Z,max} = ng_J J\mu_B$$

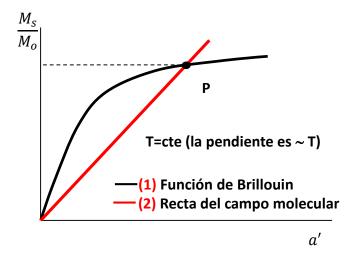
Imanación de saturación

$$a' = \frac{\mu_{z,max} \, \mu_o H_m}{k_B T} = \frac{g_J J \mu_B \mu_o \gamma M_S}{k_B T}$$

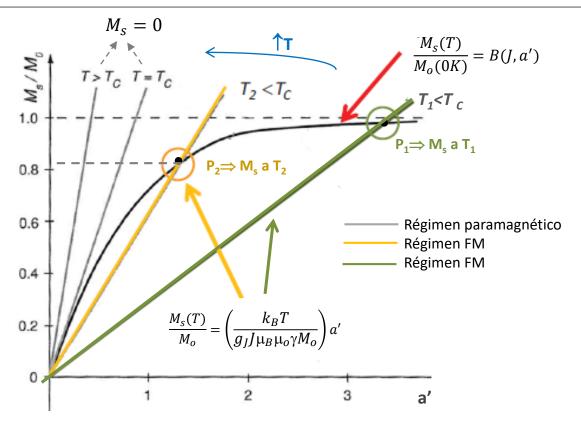
Despejando M_s y dividiendo entre M_o:

$$\frac{M_S}{M_o} = \left(\frac{k_B T}{g_J J \mu_B \mu_o \gamma M_o}\right) a' \tag{2}$$

Relación lineal que representa al campo molecular



La imanación que produciría H_m en el material viene dada por el punto de corte de (1) y (2).



- A T=T $_{\rm C}$ las pendientes de la curva de Brillouin y de la recta que representa a H_m coinciden.
- A bajos campos $\Rightarrow \frac{M_S}{M_O} = B(J, a') \sim \left(\frac{J+1}{3J}\right) a'$

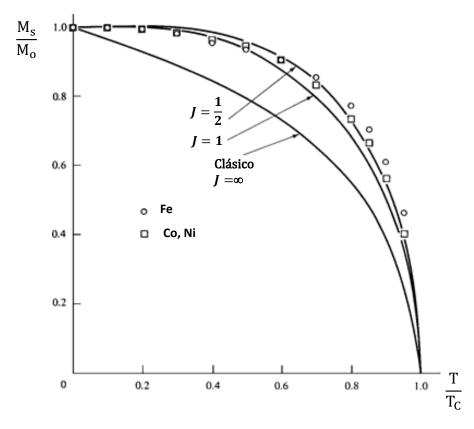
$$\frac{M_{\rm S}}{M_{\rm O}} = \left(\frac{J+1}{3J}\right) \left(\frac{T}{T_C}\right) a'$$

Relación lineal que representa al H_m en función T_c

$$\frac{K_B T_C}{g_J J \mu_B \mu_o \gamma M_o} = \left(\frac{J+1}{3J}\right) - C$$

$$T_{C} = \frac{\mu_{o}g_{J}(J+1)\mu_{B}\gamma M_{o}}{3k_{B}} = \frac{n\mu_{o}g_{J}^{2}J(J+1)\mu_{B}^{2}\gamma}{3k_{B}} = \frac{n\mu_{o}\mu_{ef}^{2}\gamma}{3k_{B}}$$

La combinación de la ecuación de Brillouin y la relación lineal $\frac{M_S}{M_O} = \left(\frac{J+1}{3J}\right) \left(\frac{T}{T_C}\right) a'$ permite obtener $\frac{M_S}{M_O}$ como función de $\frac{T}{T_C} \to Es$ una curva universal para todos los FM.



Imanación espontánea en el Fe, Co y Ni junto a las curvas teóricas a distintos J. Para J=1/2 (momento magnético debido solo al espín), la curva teórica concuerda con los datos experimentales

2- Caso en que H
$$\neq$$
0 \Rightarrow $H_{Tot} = H + H_m = H + \gamma M$

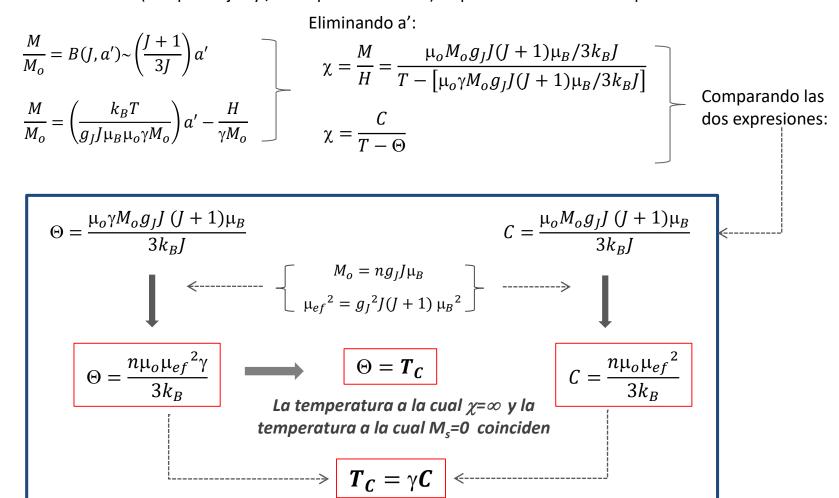
$$a' = \frac{\mu_{z,max}\mu_o(H + H_m)}{k_BT} = \frac{g_JJ\mu_B\mu_o(H + \gamma M)}{k_BT}$$
Despejando M y dividiendo entre M_o:
$$\frac{M}{M_o} = \left(\frac{K_BT}{g_JJ\mu_B\mu_o\gamma M_o}\right)a' - \frac{H}{\gamma M_o}$$

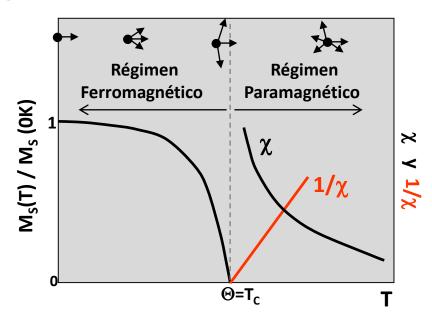
$$0.6$$

$$\frac{H}{\gamma M_o}$$

$$\frac{H}{\gamma M_o}$$

• En el límite a'<<< (campos bajos y /o temperaturas altas) se puede calcular la susceptibilidad:





	REGIMEN FERROMAGNETICO	REGIMEN PARAMAGNETICO		
	$\mu_{z,max}$ medido	μ_{ef} calculado en	$\mu_{z,max}$ calc	culado en
	en régimen FM (1)	régimen PARA (2)	régimen l	PARA (3)
			J=1/2	J=1
Fe	/ 2,22μ _B \	3,15μ _B	$1,82\mu_{B}$	$2,23\mu_{B}$
Со	1,72μ _B	3,13μ _B	, 1,81μ _Β	$2,21\mu_{B}$
Ni	\ 0,6μ _в /	1,61μ _B	0,93μ _B	$1,14\mu_{\rm B}$
			7	
	Deberían coincidir.			

- (1) De la medida de $M_o \rightarrow \mu_{z,max} = M_o / n$
- (2) De la medida de $T_C \to \mu_{ef}$

$$(T_C = \frac{n\mu_o\mu_{ef}^2\gamma}{3k_B}$$
 Ta del H_m)

(3) A partir de $\mu_{ef} \rightarrow \mu_{z,max}$

$$(\mu_{z,max} = g_J \sqrt{\frac{J}{(J+1)}} \mu_{ef})$$

Las discrepancias se explican con la teoría de bandas del magnetismo.

TABLE 3.2 Fundamental Magnetic Data for Various Crystalline Ferromagnets

Substance	Structure	M_s (290 K) (emu/cm ³)	M_s (0 K) (emu/cm ³)	$n_{B}{}^{a}=M_{s}/\mu_{B}N_{v} \ (\mu_{B})$	$T_C(T_N)$ (K)
Fe	BCC	1707	1740	2.22	1043
Co	HCP, FCC	1440	1446	1.72	1388
Ni	FCC	485	510	0.606	627
$Ni_{80}Fe_{20}$	FCC	800	930	1.0	-
Gd	HCP		2060	7.63	292
Dy	HCP		2920	10.2	88
MnBi	NiAs(hex)	620	680	3.52	630
Ni ₂ MnGa	Heusler	480			373
CrO_2		515		2.03	386
$MnOFe_2O_3$	Spinel	410		5.0	573
FeOFe ₂ O ₃	Spinel	480		4.1	858
$CoOFe_2O_3$	Spinel		-	3.2	
$NiOFe_2O_3$	Spinel	270		2.4	858
$CuOFe_2O_3$	Spinel	135		1.3	728

[&]quot;The Quantity n_B is called the magneton number, the number of bohr magnetons per atom or per formula unit in a material

INTERACCIONES

- ¿Qué hace que los momentos magnéticos atómicos se comuniquen en un sólido?
- ¿Qué interacciones pueden producir orden de largo alcance?
 - Interacción Dipolar Magnética
 - > Interacción de Canje

INTERACCIÓN DIPOLAR MAGNÉTICA

Dos dipolos magnéticos μ_1 y μ_2 separados una distancia r tienen una energía:

$$E = \frac{\mu_o}{4\pi r^3} \left[\mu_1 \cdot \mu_2 - \frac{3}{r^2} (\mu_1 \cdot \vec{r}) (\mu_2 \cdot \vec{r}) \right]$$

- \checkmark E = f (r, orientación relativa de $μ_1$ y $μ_2$).
- \checkmark Estimación: $\mu_{1,2} \sim \mu_B$, $r \sim 1$ Å \Rightarrow $E \sim \frac{\mu_0 \mu_B^2}{4r^3} \sim 10^{-23} \text{J}$ (Equivalente a $T = \frac{E}{K_B} \sim 1$ K en temperatura)
- ✓ Muchos materiales se ordenan a $T_c \sim 1000 \text{ K} \Rightarrow \text{ la interacción dipolar es muy débil como para considerarla como causa del orden de los <math>\mu_{atm}$ de la mayoría de los materiales magnéticos.
- \checkmark El campo magnético generado por un momentos magnético en la posición de otro vecino a una distancias r \sim 3 Å:

$$B_{dip} = \frac{2\mu_o \mu}{4 \pi r^3} \sim \frac{\mu_o \mu_B}{2 \pi r^3} \sim 0.1 \ T$$
 Varios órdenes de magnitud por debajo de los necesarios para explicar el FM:

$$B_{ef,Fe} = \frac{K_B T_C}{\mu_B} \sim 10^3 T$$

INTERACCIONES DE INTERCAMBIO O CANJE

- El origen del orden magnético (del H_M de Weiss) son las **interacciones de Canje o de Intercambio** \leftrightarrow Fuertes interacciones e^- con e^- que tienden a acoplar sus espines.
 - ✓ Si hay acoplo entre espines \Rightarrow FM, AF y FERRI. Si no lo hay \Rightarrow PARA.
 - ✓ Son de **naturaleza electrostática** → las interacciones de coulomb se modifican con las orientaciones de los espines de los e^- cercanos.
 - ✓ El acoplo de canje es debido al **solapamiento de los orbitales electrónicos** de los diferentes átomos y al **Principio de Exclusión de Pauli** [2 e- con espines paralelos (y resto de nºs cuánticos idénticos) tienden a mantenerse alejados ⇒ Cambia la interacción culombiana entre ellos].
- El canje intra-atómico entre e^- del mismo átomo conduce a la 1º regla de Hund.
- En el canje inter-atómico existe una diferencia de energía entre las configuraciones paralela $(\uparrow_i \uparrow_j)$ y antiparalela $(\downarrow_i \uparrow_j)$ de los espines de átomos vecinos i y j.

La energía de canje depende de la orientación de los espines:

$$\varepsilon_{ex} = -2\boldsymbol{J}_{ex}\vec{\boldsymbol{S}}_{1}.\vec{\boldsymbol{S}}_{2}. = -2\boldsymbol{J}_{ex}S_{1}.S_{2}\cos\phi$$

- ightharpoonup Si J_{ex} > 0 \Rightarrow ε_{ex} es mínima (ε_{ex} < 0) cuando los espines están $\uparrow_i \uparrow_j (cos \phi = 1) \Rightarrow$ orden FM.
- ightharpoonup Si J_{ex} < 0 \Rightarrow ε_{ex} es mínima (ε_{ex} < 0) cuando los espines están $\downarrow_i \uparrow_i (cos \phi = -1) \Rightarrow$ orden AF.
- La interacción de canje depende principalmente de las distancias interatómicas y no de la regularidad periódica de los átomos en la red ⇒ No se requiere orden cristalino para que un material sea FM o AF.

ORIGEN DEL ORDEN DEL FERROMAGNETISMO: INTERACCIONES DE CANJE

Sistema de 2 electrones (ej. molécula de H₂)

 La función de ondas total es el producto de una parte espacial y de una parte de espín y ha de ser antisimétrica con respecto al intercambio de los e⁻:

$$\Psi(1,2) = \phi(\vec{r}_1.\vec{r}_2).\chi(s_1,s_2) \text{ tal que } \Psi(1,2) = -\Psi(2,1)$$

$$\Psi_{singlete}(1,2) = \phi_{sim}(\vec{r}_1,\vec{r}_2).\chi_{ant}(1,2)$$

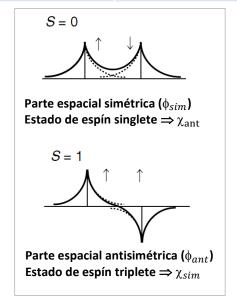
$$\Psi_{triplete}(1,2) = \phi_{ant}(\vec{r}_1,\vec{r}_2).\chi_{sim}(1,2)$$

• Las energías de estos dos estados posibles se evalúa con el hamiltoniano y resulta ser distinta en los materiales con orden magnético espontáneo:

$$\begin{split} \varepsilon_{singlete} &= \int \Psi_{singlete}^* H \, \Psi_{singlete} d\vec{r}_1 d\vec{r}_2 \\ \varepsilon_{triplete} &= \int \Psi_{triplete}^* H \, \Psi_{triplete} d\vec{r}_1 d\vec{r}_2 \end{split}$$

La energía de dos e- cercanos depende de la simetría de sus orbitales (de su distribución espacial) \Rightarrow de la orientación relativa de sus espines debido al carácter antisimétrico de Ψ .

Parte espacial	Parte de espín
$\phi_{SIM} \left(\vec{r}_1 . \vec{r}_2 ight)$	$\times \chi_{ANT}\left(s_1, s_2\right)$
$\phi_{ANT}\left(\vec{r}_1.\vec{r}_2\right)$	$\times \chi_{SIM}(s_1,s_2)$



Funciones de onda espaciales, ϕ :

- Dos e^- con estado de espines $\uparrow \uparrow$, no pueden encontrarse en el mismo punto del espacio (nodo en ϕ_{an}).

INTERACCIONES DE INTERCAMBIO O CANJE

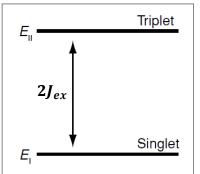
 Def ⇒ La constante de Canje o Integral de Canje se define a partir de la diferencia de energía entre el estado singlete y el triplete:

$$J_{ex} = \frac{\varepsilon_{singlete} - \varepsilon_{triplete}}{2}$$

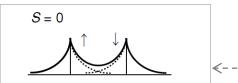
 J_{ex} tiene unidades de energía

- Si $J_{ex} > 0 \Rightarrow \varepsilon_{singlete} > \varepsilon_{triplete}$ y entonces el estado triplete está favorecido. Sucede una **interacción ferromagnética** que tiende a ordenar los espines paralelos.
- Si J_{ex} < 0 \Rightarrow $\varepsilon_{singlete}$ < $\varepsilon_{triplete}$ y entonces el estado singlete está favorecido. Sucede una **interacción antiferromagnético** que tiende a ordenar los espines antiparalelos.
- Se puede escribir la energía de canje como:

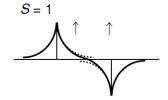
$$\varepsilon_{ex} = -2J_{ex}\vec{s}_1\vec{s}_2$$



Splitting of the spin singlet and spin triplet states for the $\rm H_2$ molecule. The exchange integral $\cal J$ is negative, so the singlet is lower.



Parte espacial simétrica (ϕ_{sim}) Estado de espín singlete $\Rightarrow \chi_{ant}$



Parte espacial antisimétrica (ϕ_{ant}) Estado de espín triplete $\Rightarrow \chi_{sim}$

INTERACCIONES DE INTERCAMBIO O CANJE

Hamiltoniano de Heisenberg para una red de átomos con sitios i y j

$$H_{ex} = -2\sum_{pares\ ij} J_{ij}\,\hat{S}_i.\hat{S}_j \sim -J_{ex}\sum_{pares\ ij}\hat{S}_i.\hat{S}_j$$

 $\hat{S}_i \ y \ \hat{S}_j$ son operadores de espín adimensionales.

- La suma se extiende sobre todas las parejas de átomos pero como la interacción de canje es muy intensa pero de corto alcance \Rightarrow la suma se restringe solo a los primeros vecinos $(J_{ij} \leftrightarrow J_{ex})$
- Conclusión⇒ El hamiltoniano deducido muestra que las interacciones de canje acoplan los espines atómicos.
- La constante de canje se puede relacionar con la constante de Weiss del campo molecular, γ :

$$J_{ex} = \frac{\mu_o g_s^2 \mu_B^2 \gamma}{2Z}$$
 con Z el nº de primeros vecinos
$$T_C = \theta = \frac{n\mu_o \mu_{ef}^2}{3k_B} \gamma = \frac{n\mu_o g_s^2 S(S+1) \mu_B^2}{3k_B} \gamma$$

Ej. Para el Gd,
$$T_C$$
=292 K, S=7/2, Z=12 \Rightarrow J_{ex}/K_B = 2,3 K

INTERACCIONES DE INTERCAMBIO O CANJE. TIPOS.

Tipos de interacciones de canje

CANJE DIRECTO

• SÚPERCANJE

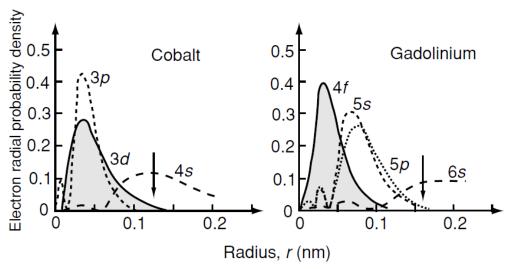


CANJE INDIRECTO (en Metales)

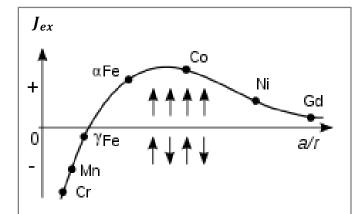
INTERACCIONES DE INTERCAMBIO O CANJE. TIPOS.

Canje directo

- Interacción de canje entre e⁻ de átomos vecinos vía una interacción directa, sin necesidad de intermediarios.
- Sucede cuando hay un solapamiento directo suficiente (aunque sea parcial) entre los orbitales electrónicos <u>localizados</u> de átomos vecinos.
- El signo del canje directo depende principalmente de la ocupación de la banda y del espaciado interatómico. Un largo espaciado favorece un acoplo FM y uno corto acoplo AF.



El canje directo no es muy efectivo en TR porque los orbitales semillenos 4f están muy localizados y caen más cerca del núcleo que en el caso de los metales $3d \Rightarrow$ solapan con más dificultad con los orbitales de los átomos vecinos.

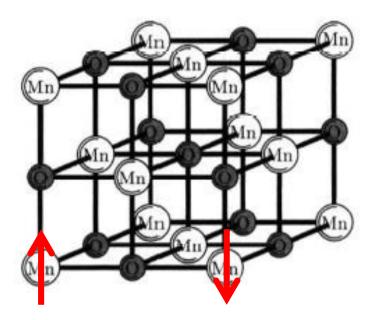


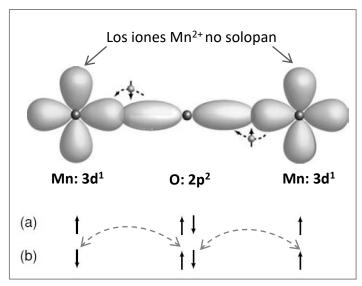
Curva Bethe-Slater: cte de canje de los TM vs distancia interatómica, a, normalizada con el radio de la corteza de los e^- 3d, r.

INTERACCIONES DE INTERCAMBIO O CANJE. TIPOS.

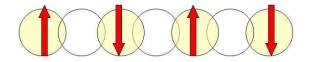
Supercanje

- Interacción de canje indirecto entre 2 momentos magnéticos localizados de dos átomos no vecinos (sus orbitales no están hibridizados) que está mediada por un ion no magnético situado entre ellos.
- Se las denomina "súper" canje porque las interacciones de canje son normalmente de muy corto alcance.
- El supercanje suele producir orden AF aunque también puede dar orden FM.





Supercanje AF en MnO



La configuración de acoplo AF de (b) tiene menos energía que la configuración de acoplo FM de (a). Los puentes de oxígeno transmiten la interacción de canje.

INTERACCIONES DE INTERCAMBIO O CANJE: TIPOS

Canje indirecto en metales

- En metales, la interacción entre iones magnéticos puede ser mediada por los e^- de conducción. No hay canje directo entre e^- localizados.
- Un μ_{atm} localizado polariza el espín de un e^- de conducción y esta polarización produce un acoplo con un μ_{atm} localizado vecino a una distancia r.
- Interacción de canje indirecta oscilatoria en r_{ab} (distancia entre los átomos localizados) y que decae con $1/r_{ab}^3$:

$$J_{RKKY} \sim \frac{cos(2k_F r_{ab})}{{r_{ab}}^3}$$

RKKY (Ruderman, Kittel, Kasuya and Yosida)

- Dependiendo de la distancia el acoplo puede ser FM o AF.
- Es una interacción de largo alcance y es eficiente cuando el nº de e⁻de conducción es grande.

