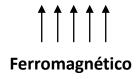
#### **TEMA 1: ORIGEN Y TIPOS DE MAGNETISMO**

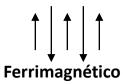
Tema 1a: Aspectos previos

Tema 1b: Origen del Momento Magnético

Tema 1c: Magnetismo de electrones localizados: Diamagnetismo orbital y

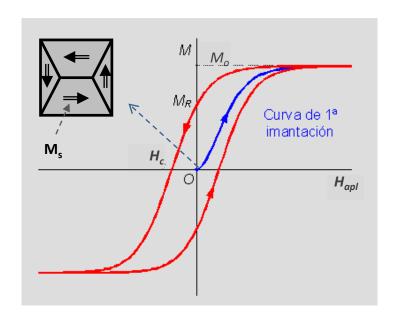
Paramagnetismo de Curie


Tema 1d: Magnetismo Intenso: Canje y orden magnético


Tema 1e: Magnetismo de electrones deslocalizados

### Tema 1d:

- Introducción: Ferromagnetismo y Ferrimagnetismo
- Campo molecular y orden magnético
- Interacciones: Interacción dipolar magnética e interacción de canje

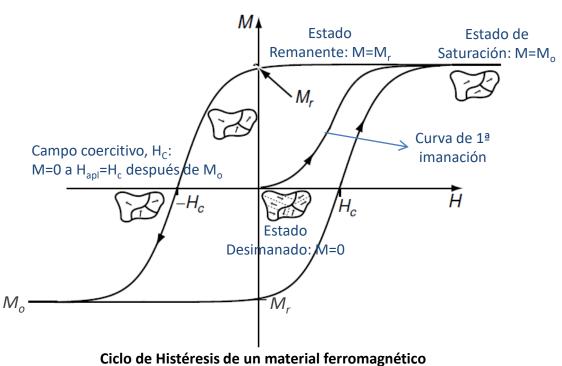

# Magnetismo intenso






- ✓ Imanación espontánea, M<sub>s</sub>, a H=0 (prop. intrínseca).
- ✓ Se pueden imanar a saturación con bajos H<sub>apl</sub>.
- ✓  $M_s \sim M_o$  (imanación de saturación).
- ✓ Temperatura de orden magnético (de Curie): T<sub>c</sub>.

- ✓ Histéresis magnética (desaparece T>T<sub>C</sub>).
- ✓ Presencia de dominios magnéticos.
- ✓ Fuertes interacciones de canje entre los  $\mu_{\text{atm}}$ .
- ✓ ∃ direcciones de fácil imanación "Ejes Fáciles".



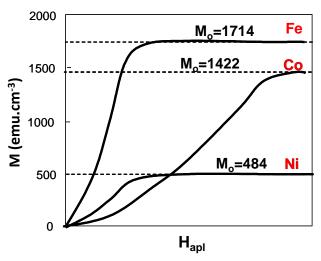

Dominios magnéticos
 Regiones ~μm donde los momentos magnéticos están ordenados separadas por la "pared de dominio".



**Dominios magnéticos** 

Histéresis magnética (James Ewing en 1981)
 Respuesta irreversible y no lineal de la imanación de un FM a un H<sub>apl</sub>.




Proceso de imanación: Multidominio ⇒ monodominio  $\mathbf{H}_{\mathsf{apl}}$ a) M=0 b) M>0 d)  $M=M_s\cos\theta$ d)  $M=M_s$ Con M<sub>s</sub> el valor de M dentro de un dominio (M<sub>s</sub>~M<sub>o</sub> en un FM).

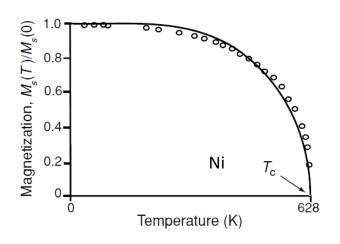
### Imanación de saturación, M<sub>o</sub>

- $\checkmark$  A medida que aumenta  $H_{apl}$  ⇒ aumenta la imanación hasta llegar al valor de saturación,  $M_o$ .
- ✓ En saturación todos los momentos magnéticos están alineados con el campo.
- ✓ M<sub>o</sub> depende solo de la magnitud de los momentos magnéticos (propiedad intrínseca).
- ✓ El valor de campo para el cual se alcanza la saturación,  $H_{sat}$ , depende de la estructura.
- ✓ M₀ no depende de la microestructura, sólo de los materiales y las fases presentes.

$$M_o \sim n~\mu_{~at}$$
  $\mu_{~at} \sim \mu_{~B} \sim 10^{-23} J.~T^{-1}$   $n \approx 10^{29}~{\rm átomos~m^{-3}}$   $M_o = n\mu_{\rm B} \approx 1~{\rm T}$ 

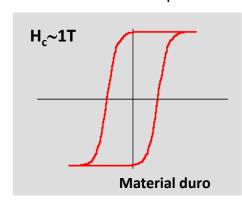
| Material                                                                       | M <sub>0</sub> (10 <sup>6</sup> A.m <sup>-1</sup> ) | M <sub>s</sub> (T) |
|--------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|
| Iron                                                                           | 1.71                                                | 2.1                |
| Cobalt                                                                         | 1.42                                                | 1.78               |
| Nickel                                                                         | 0.48                                                | 0.60               |
| 78 Permalloy (78% Ni, 22% Fe)                                                  | 0.86                                                | 1.08               |
| Supermalloy (80% Ni, 15% Fe, 5% Mo)                                            | 0.63                                                | 0.79               |
| Metglas 2605 (Fe <sub>80</sub> B <sub>20</sub> )                               | 1.27                                                | 1.59               |
| Metglas 2615 (Fe <sub>80</sub> P <sub>16</sub> C <sub>3</sub> B <sub>1</sub> ) | 1.36                                                | 1.71               |
| Permendur (50% Co, 50% Fe)                                                     | 1.91                                                | 2.40               |
| Fe <sub>65</sub> Co <sub>35</sub>                                              | 1.95                                                | 2.45               |

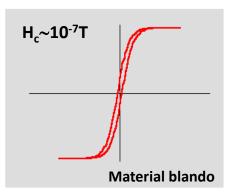



## • Temperatura de Curie

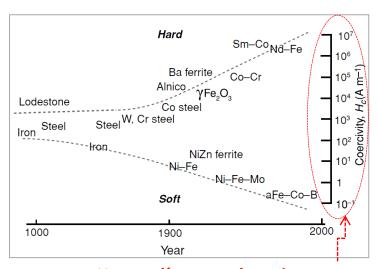
 $Def \Longrightarrow Temperatura \ a \ la \ cual \ la \ M_s \ debida \ al \ alineamiento \ de \\ los \ \mu_{atm} \ en \ los \ dominios \ cae \ precipitadamente \ a \ cero.$ 

- ightharpoonup T>T<sub>C</sub>  $\Rightarrow$  M<sub>s</sub>(T)=0.
- $ightharpoonup T< T_C \Rightarrow M_s(T)$  es reversible.


$$T_{C,Ni}$$
 = 628 K ;  $T_{C,Fe}$  = 1044 K ;  $T_{C,Co}$  = 1388 K (elemento con mayor  $T_C$ )


 $M_s(T)/M_s(0)$  vs T/TC es una curva universal  $\forall$  FM.

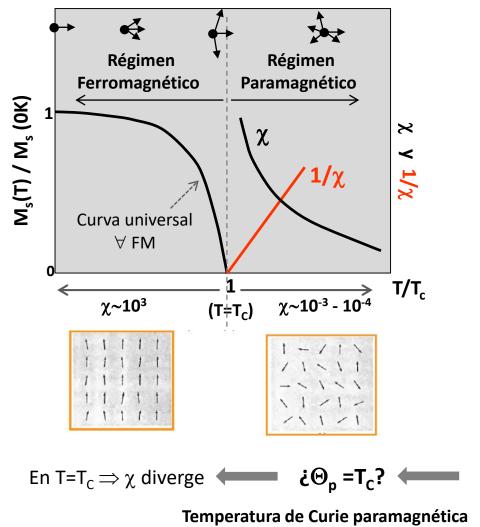


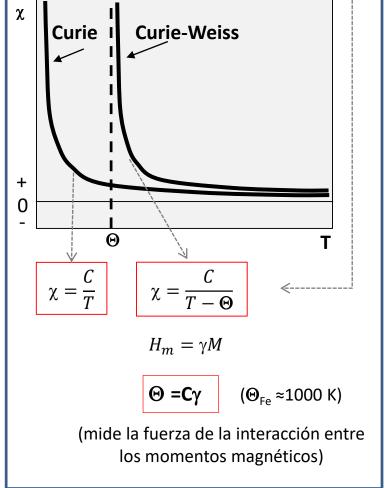

## Campo coercitivo, H<sub>c</sub>

Def $\Rightarrow$  Campo inverso que hay que aplicar para que M vuelva a ser nula después de la saturación. Prop. extrínseca.






El área encerrada por el ciclo representa la pérdida de energía por ciclo (pequeña para materiales blandos).




¡¡¡Hoy en día se puede variar en 8 órdenes de magnitud!!!

<sup>\*</sup>Estrictamente hablando,  $H_C$  se refiere al campo que anula B y  $H_{Ci}$  (campo coercitivo intrínseco) al que anula M.

# Ferromagnético vs Paramagnético





Material paramagnético

# CAMPO MOLECULAR Y ODEN MAGNÉTICO

 Pierre Weiss (1907) → explica el comportamiento de los materiales FM en términos de un enorme "Campo Molecular" interno, proporcional a la imanación:

$$H_m = \gamma M$$
  $\gamma >> 1$ : Coeficiente del campo molecular ( $\gamma \sim 10^3$ ).  $H_m \sim 10^9 Am^{-1} (B_m \sim 10^3 T)$ 

- Este campo también actúa a T <  $T_c \Rightarrow$  los FM se "auto-imanan" espontáneamente por la acción de  $H_m$ .
- Un FM sería como un paramagnético con un  $H_m$  interno muy grande ( $\Theta \sim 1000$  K  $\Rightarrow \gamma >>$ ).
- Extiende la teoría del paramagnetismo de Langevin suponiendo que el campo aplicado se remplaza por la suma del campo aplicado más el campo molecular:  $H_{apl} + H_m$
- El  $H_m$  no existe realmente pero es una ayuda para describir el efecto de la interacción de Coulomb en el marco mecánico-cuántico:

$$H_{ex} = -2\sum_{i < j} J_{ij} \vec{S}_i \vec{S}_j$$
  $J_{ij} > 0 \Rightarrow$  Orden FM en 3D

• Weiss también sugirió la  $\exists$  de **dominios magnéticos** en los cuales unos  $10^{12}$ - $10^{18}$   $\mu_{atm}$  están alineados entre sí tal que la imanación está prácticamente saturada a  $H_{apl}$ = $0 \rightarrow$  Imanación espontánea. La dirección de la imanación cambia de un dominio a otro.



Dominios dónde la imanación neta se cancela



H<sub>apl</sub> grande. M=M<sub>o</sub>

### CAMPO MOI FCUI AR

Aplicamos las ideas de Weiss al modelo cuántico del paramagnetismo: Teoría de Brillouin

$$H_{Tot} = H + H_m = H + \gamma M$$

1- Caso en que H=0 
$$\Rightarrow M = M_s \Rightarrow H_{Tot} = H_m = \gamma M_s$$

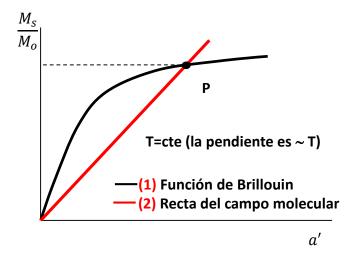
$$\frac{M_s}{M_o} = B(J, a') = \frac{2J+1}{2J} \coth \frac{2J+1}{2J} a' - \frac{1}{2J} \coth \frac{a'}{2J} \qquad a' = \frac{\mu_{z,max}B}{k_B T} = \frac{g_J \mu_B J B}{k_B T}$$

$$M_s \text{ (imanación espontánea a H=0)} \tag{1}$$

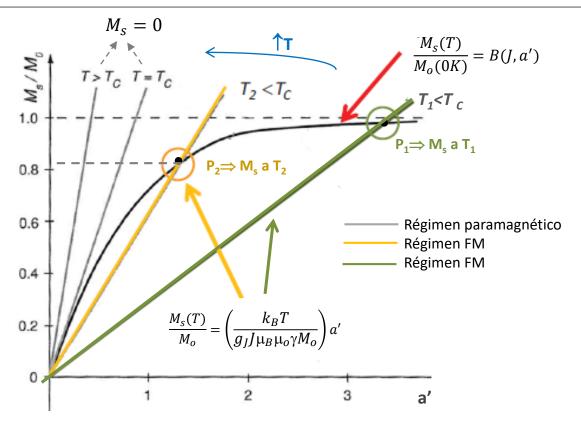
 $M_s$  (imanación espontánea a H=0)

$$a' = \frac{\mu_{z,max}B}{k_BT} = \frac{g_J \mu_B JB}{k_BT}$$

$$M_o = n\mu_{Z,max} = ng_J J\mu_B$$


Imanación de saturación

$$a' = \frac{\mu_{z,max} \, \mu_o H_m}{k_B T} = \frac{g_J J \mu_B \mu_o \gamma M_S}{k_B T}$$


Despejando M<sub>s</sub> y dividiendo entre M<sub>o</sub>:

$$\frac{M_S}{M_o} = \left(\frac{k_B T}{g_J J \mu_B \mu_o \gamma M_o}\right) a' \tag{2}$$

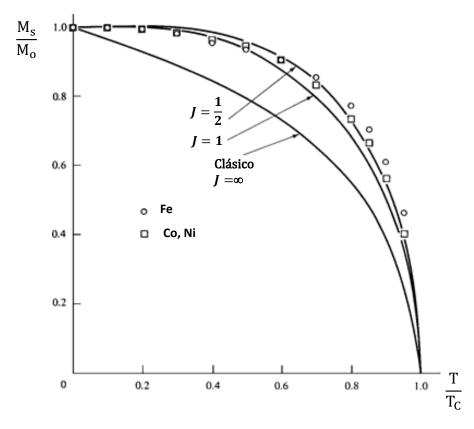
Relación lineal que representa al campo molecular



La imanación que produciría  $H_m$  en el material viene dada por el punto de corte de (1) y (2).



- A T=T $_{\rm C}$  las pendientes de la curva de Brillouin y de la recta que representa a  $H_m$  coinciden.
- A bajos campos  $\Rightarrow \frac{M_S}{M_O} = B(J, a') \sim \left(\frac{J+1}{3J}\right) a'$


$$\frac{M_{\rm S}}{M_{\rm O}} = \left(\frac{J+1}{3J}\right) \left(\frac{T}{T_C}\right) a'$$

Relación lineal que representa al  $H_m$  en función  $T_c$ 

$$\frac{K_B T_C}{g_J J \mu_B \mu_o \gamma M_o} = \left(\frac{J+1}{3J}\right) - C$$

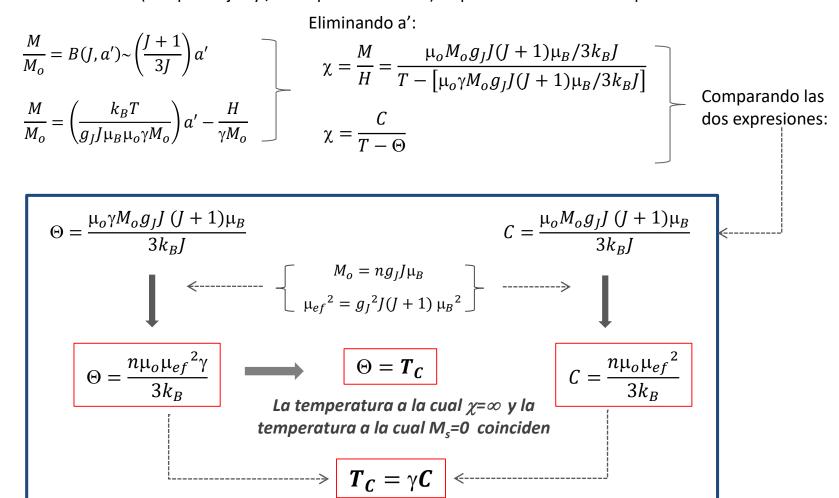
$$T_{C} = \frac{\mu_{o}g_{J}(J+1)\mu_{B}\gamma M_{o}}{3k_{B}} = \frac{n\mu_{o}g_{J}^{2}J(J+1)\mu_{B}^{2}\gamma}{3k_{B}} = \frac{n\mu_{o}\mu_{ef}^{2}\gamma}{3k_{B}}$$

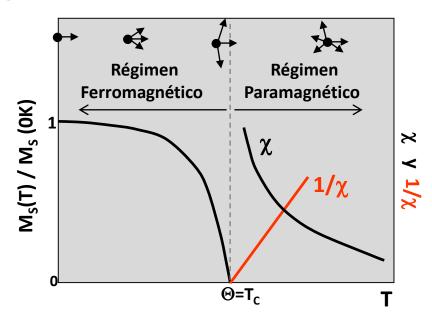
La combinación de la ecuación de Brillouin y la relación lineal  $\frac{M_S}{M_O} = \left(\frac{J+1}{3J}\right) \left(\frac{T}{T_C}\right) a'$  permite obtener  $\frac{M_S}{M_O}$  como función de  $\frac{T}{T_C} \to Es$  una curva universal para todos los FM.



Imanación espontánea en el Fe, Co y Ni junto a las curvas teóricas a distintos J. Para J=1/2 (momento magnético debido solo al espín), la curva teórica concuerda con los datos experimentales

2- Caso en que H
$$\neq$$
0  $\Rightarrow$   $H_{Tot} = H + H_m = H + \gamma M$ 


$$a' = \frac{\mu_{z,max}\mu_o(H + H_m)}{k_BT} = \frac{g_JJ\mu_B\mu_o(H + \gamma M)}{k_BT}$$
Despejando M y dividiendo entre M<sub>o</sub>:
$$\frac{M}{M_o} = \left(\frac{K_BT}{g_JJ\mu_B\mu_o\gamma M_o}\right)a' - \frac{H}{\gamma M_o}$$


$$0.6$$

$$\frac{H}{\gamma M_o}$$

$$\frac{H}{\gamma M_o}$$

• En el límite a'<<< (campos bajos y /o temperaturas altas) se puede calcular la susceptibilidad:





|    | REGIMEN<br>FERROMAGNETICO | REGIMEN<br>PARAMAGNETICO |                         |                   |
|----|---------------------------|--------------------------|-------------------------|-------------------|
|    | $\mu_{z,max}$ medido      | $\mu_{ef}$ calculado en  | $\mu_{z,max}$ calc      | culado en         |
|    | en régimen FM (1)         | régimen PARA (2)         | régimen l               | PARA (3)          |
|    |                           |                          | J=1/2                   | J=1               |
| Fe | / 2,22μ <sub>B</sub> \    | 3,15μ <sub>B</sub>       | $1,82\mu_{B}$           | $2,23\mu_{B}$     |
| Со | 1,72μ <sub>B</sub>        | 3,13μ <sub>B</sub>       | ,<br>1,81μ <sub>Β</sub> | $2,21\mu_{B}$     |
| Ni | \ 0,6μ <sub>в</sub> /     | 1,61μ <sub>B</sub>       | 0,93μ <sub>B</sub>      | $1,14\mu_{\rm B}$ |
|    |                           |                          | 7                       |                   |
|    | Deberían coincidir.       |                          |                         |                   |

- (1) De la medida de  $M_o \rightarrow \mu_{z,max} = M_o / n$
- (2) De la medida de  $T_C \to \mu_{ef}$

$$(T_C = \frac{n\mu_o\mu_{ef}^2\gamma}{3k_B}$$
 Ta del  $H_m$ )

(3) A partir de  $\mu_{ef} \rightarrow \mu_{z,max}$ 

$$(\mu_{z,max} = g_J \sqrt{\frac{J}{(J+1)}} \mu_{ef})$$

Las discrepancias se explican con la teoría de bandas del magnetismo.

TABLE 3.2 Fundamental Magnetic Data for Various Crystalline Ferromagnets

| Substance                         | Structure | $M_s$ (290 K) (emu/cm <sup>3</sup> ) | $M_s$ (0 K) (emu/cm <sup>3</sup> ) | $n_{B}{}^{a}=M_{s}/\mu_{B}N_{v} \ (\mu_{B})$ | $T_C(T_N)$ (K) |
|-----------------------------------|-----------|--------------------------------------|------------------------------------|----------------------------------------------|----------------|
| Fe                                | BCC       | 1707                                 | 1740                               | 2.22                                         | 1043           |
| Co                                | HCP, FCC  | 1440                                 | 1446                               | 1.72                                         | 1388           |
| Ni                                | FCC       | 485                                  | 510                                | 0.606                                        | 627            |
| $Ni_{80}Fe_{20}$                  | FCC       | 800                                  | 930                                | 1.0                                          | -              |
| Gd                                | HCP       |                                      | 2060                               | 7.63                                         | 292            |
| Dy                                | HCP       |                                      | 2920                               | 10.2                                         | 88             |
| MnBi                              | NiAs(hex) | 620                                  | 680                                | 3.52                                         | 630            |
| Ni <sub>2</sub> MnGa              | Heusler   | 480                                  |                                    |                                              | 373            |
| $CrO_2$                           |           | 515                                  |                                    | 2.03                                         | 386            |
| $MnOFe_2O_3$                      | Spinel    | 410                                  |                                    | 5.0                                          | 573            |
| FeOFe <sub>2</sub> O <sub>3</sub> | Spinel    | 480                                  |                                    | 4.1                                          | 858            |
| $CoOFe_2O_3$                      | Spinel    | <del></del>                          | <del>-</del>                       | 3.2                                          |                |
| $NiOFe_2O_3$                      | Spinel    | 270                                  |                                    | 2.4                                          | 858            |
| $CuOFe_2O_3$                      | Spinel    | 135                                  |                                    | 1.3                                          | 728            |

<sup>&</sup>quot;The Quantity  $n_B$  is called the magneton number, the number of bohr magnetons per atom or per formula unit in a material

# **INTERACCIONES**

- ¿Qué hace que los momentos magnéticos atómicos se comuniquen en un sólido?
- ¿Qué interacciones pueden producir orden de largo alcance?
  - Interacción Dipolar Magnética
  - > Interacción de Canje

# INTERACCIÓN DIPOLAR MAGNÉTICA

Dos dipolos magnéticos  $\mu_1$  y  $\mu_2$  separados una distancia r tienen una energía:

$$E = \frac{\mu_o}{4\pi r^3} \left[ \mu_1 \cdot \mu_2 - \frac{3}{r^2} (\mu_1 \cdot \vec{r}) (\mu_2 \cdot \vec{r}) \right]$$

- $\checkmark$  E = f (r, orientación relativa de  $μ_1$  y  $μ_2$ ).
- $\checkmark$  Estimación:  $\mu_{1,2} \sim \mu_B$ ,  $r \sim 1$  Å  $\Rightarrow$   $E \sim \frac{\mu_0 \mu_B^2}{4r^3} \sim 10^{-23} \text{J}$  (Equivalente a  $T = \frac{E}{K_B} \sim 1$  K en temperatura)
- ✓ Muchos materiales se ordenan a  $T_c \sim 1000 \text{ K} \Rightarrow \text{ la interacción dipolar es muy débil como para considerarla como causa del orden de los <math>\mu_{atm}$ de la mayoría de los materiales magnéticos.
- $\checkmark$  El campo magnético generado por un momentos magnético en la posición de otro vecino a una distancias r  $\sim$  3 Å:

$$B_{dip} = \frac{2\mu_o \mu}{4 \pi r^3} \sim \frac{\mu_o \mu_B}{2 \pi r^3} \sim 0.1 \ T$$
 Varios órdenes de magnitud por debajo de los necesarios para explicar el FM:

$$B_{ef,Fe} = \frac{K_B T_C}{\mu_B} \sim 10^3 T$$

## INTERACCIONES DE INTERCAMBIO O CANJE

- El origen del orden magnético (del  $H_M$  de Weiss) son las **interacciones de Canje o de Intercambio**  $\leftrightarrow$  Fuertes interacciones  $e^-$  con  $e^-$  que tienden a acoplar sus espines.
  - ✓ Si hay acoplo entre espines  $\Rightarrow$  FM, AF y FERRI. Si no lo hay  $\Rightarrow$  PARA.
  - ✓ Son de **naturaleza electrostática** → las interacciones de coulomb se modifican con las orientaciones de los espines de los  $e^-$  cercanos.
  - ✓ El acoplo de canje es debido al **solapamiento de los orbitales electrónicos** de los diferentes átomos y al **Principio de Exclusión de Pauli** [2 e- con espines paralelos (y resto de nºs cuánticos idénticos) tienden a mantenerse alejados ⇒ Cambia la interacción culombiana entre ellos].
- El canje intra-atómico entre  $e^-$  del mismo átomo conduce a la 1º regla de Hund.
- En el canje inter-atómico existe una diferencia de energía entre las configuraciones paralela  $(\uparrow_i \uparrow_j)$  y antiparalela  $(\downarrow_i \uparrow_j)$  de los espines de átomos vecinos i y j.

La energía de canje depende de la orientación de los espines:

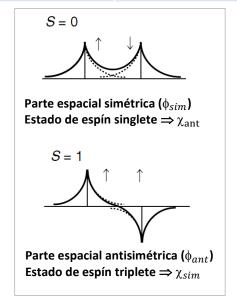
$$\varepsilon_{ex} = -2\boldsymbol{J}_{ex}\vec{\boldsymbol{S}}_{1}.\vec{\boldsymbol{S}}_{2}. = -2\boldsymbol{J}_{ex}S_{1}.S_{2}\cos\phi$$

- ightharpoonup Si  $J_{ex}$  > 0  $\Rightarrow$   $\varepsilon_{ex}$  es mínima ( $\varepsilon_{ex}$  < 0) cuando los espines están  $\uparrow_i \uparrow_j (cos \phi = 1) \Rightarrow$  orden FM.
- ightharpoonup Si  $J_{ex}$  < 0  $\Rightarrow$   $\varepsilon_{ex}$  es mínima ( $\varepsilon_{ex}$  < 0) cuando los espines están  $\downarrow_i \uparrow_i (cos \phi = -1) \Rightarrow$  orden AF.
- La interacción de canje depende principalmente de las distancias interatómicas y no de la regularidad periódica de los átomos en la red ⇒ No se requiere orden cristalino para que un material sea FM o AF.

## ORIGEN DEL ORDEN DEL FERROMAGNETISMO: INTERACCIONES DE CANJE

## Sistema de 2 electrones (ej. molécula de H<sub>2</sub>)

 La función de ondas total es el producto de una parte espacial y de una parte de espín y ha de ser antisimétrica con respecto al intercambio de los e<sup>-</sup>:


$$\Psi(1,2) = \phi(\vec{r}_1.\vec{r}_2).\chi(s_1,s_2) \text{ tal que } \Psi(1,2) = -\Psi(2,1)$$
 
$$\Psi_{singlete}(1,2) = \phi_{sim}(\vec{r}_1,\vec{r}_2).\chi_{ant}(1,2)$$
 
$$\Psi_{triplete}(1,2) = \phi_{ant}(\vec{r}_1,\vec{r}_2).\chi_{sim}(1,2)$$

• Las energías de estos dos estados posibles se evalúa con el hamiltoniano y resulta ser distinta en los materiales con orden magnético espontáneo:

$$\begin{split} \varepsilon_{singlete} &= \int \Psi_{singlete}^* H \, \Psi_{singlete} d\vec{r}_1 d\vec{r}_2 \\ \varepsilon_{triplete} &= \int \Psi_{triplete}^* H \, \Psi_{triplete} d\vec{r}_1 d\vec{r}_2 \end{split}$$

La energía de dos e- cercanos depende de la simetría de sus orbitales (de su distribución espacial)  $\Rightarrow$  de la orientación relativa de sus espines debido al carácter antisimétrico de  $\Psi$ .

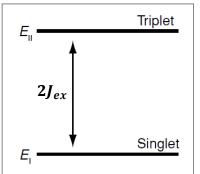
| Parte espacial                                   | Parte de espín                            |
|--------------------------------------------------|-------------------------------------------|
| $\phi_{SIM} \left( \vec{r}_1 . \vec{r}_2  ight)$ | $\times  \chi_{ANT}\left(s_1, s_2\right)$ |
| $\phi_{ANT}\left(\vec{r}_1.\vec{r}_2\right)$     | $\times \chi_{SIM}(s_1,s_2)$              |



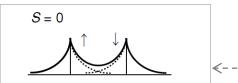
#### Funciones de onda espaciales, $\phi$ :

- Dos  $e^-$  con estado de espines  $\uparrow \uparrow$ , no pueden encontrarse en el mismo punto del espacio (nodo en  $\phi_{an}$ ).

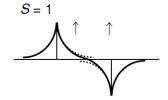
#### INTERACCIONES DE INTERCAMBIO O CANJE


 Def ⇒ La constante de Canje o Integral de Canje se define a partir de la diferencia de energía entre el estado singlete y el triplete:

$$J_{ex} = \frac{\varepsilon_{singlete} - \varepsilon_{triplete}}{2}$$


 $J_{ex}$  tiene unidades de energía

- Si  $J_{ex} > 0 \Rightarrow \varepsilon_{singlete} > \varepsilon_{triplete}$  y entonces el estado triplete está favorecido. Sucede una **interacción ferromagnética** que tiende a ordenar los espines paralelos.
- Si  $J_{ex}$ < 0  $\Rightarrow$   $\varepsilon_{singlete}$  <  $\varepsilon_{triplete}$  y entonces el estado singlete está favorecido. Sucede una **interacción antiferromagnético** que tiende a ordenar los espines antiparalelos.
- Se puede escribir la energía de canje como:


$$\varepsilon_{ex} = -2J_{ex}\vec{s}_1\vec{s}_2$$



Splitting of the spin singlet and spin triplet states for the  $\rm H_2$  molecule. The exchange integral  $\cal J$  is negative, so the singlet is lower.



Parte espacial simétrica ( $\phi_{sim}$ ) Estado de espín singlete  $\Rightarrow \chi_{ant}$ 



Parte espacial antisimétrica ( $\phi_{ant}$ ) Estado de espín triplete  $\Rightarrow \chi_{sim}$ 

#### INTERACCIONES DE INTERCAMBIO O CANJE

# Hamiltoniano de Heisenberg para una red de átomos con sitios i y j

$$H_{ex} = -2\sum_{pares\ ij} J_{ij}\,\hat{S}_i.\hat{S}_j \sim -J_{ex}\sum_{pares\ ij}\hat{S}_i.\hat{S}_j$$

 $\hat{S}_i \ y \ \hat{S}_j$  son operadores de espín adimensionales.

- La suma se extiende sobre todas las parejas de átomos pero como la interacción de canje es muy intensa pero de corto alcance  $\Rightarrow$  la suma se restringe solo a los primeros vecinos  $(J_{ij} \leftrightarrow J_{ex})$
- Conclusión⇒ El hamiltoniano deducido muestra que las interacciones de canje acoplan los espines atómicos.
- La constante de canje se puede relacionar con la constante de Weiss del campo molecular,  $\gamma$ :

$$J_{ex} = \frac{\mu_o g_s^2 \mu_B^2 \gamma}{2Z}$$
 con Z el nº de primeros vecinos 
$$T_C = \theta = \frac{n\mu_o \mu_{ef}^2}{3k_B} \gamma = \frac{n\mu_o g_s^2 S(S+1) \mu_B^2}{3k_B} \gamma$$

Ej. Para el Gd, 
$$T_C$$
=292 K, S=7/2, Z=12  $\Rightarrow$   $J_{ex}/K_B$ = 2,3 K

## INTERACCIONES DE INTERCAMBIO O CANJE. TIPOS.

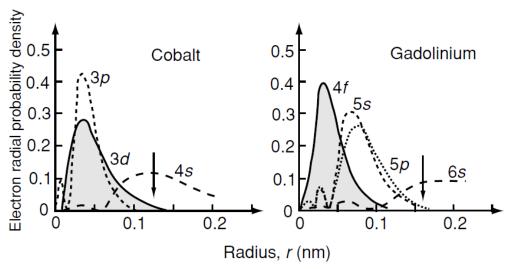
# Tipos de interacciones de canje



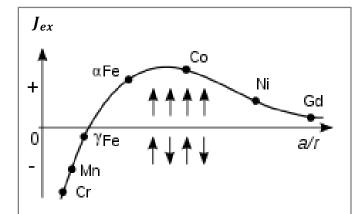
CANJE DIRECTO



• SÚPERCANJE




CANJE INDIRECTO (en Metales)

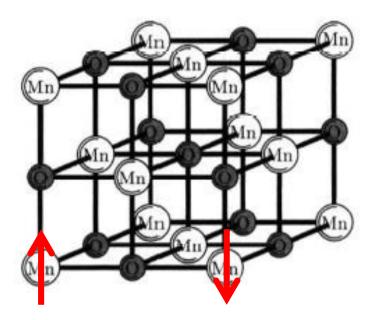

### INTERACCIONES DE INTERCAMBIO O CANJE. TIPOS.

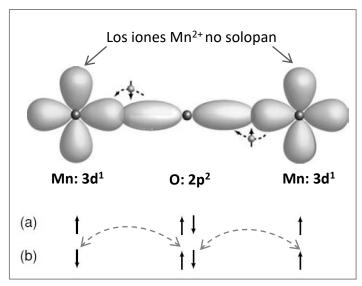
# **Canje directo**

- Interacción de canje entre e<sup>-</sup> de átomos vecinos vía una interacción directa, sin necesidad de intermediarios.
- Sucede cuando hay un solapamiento directo suficiente (aunque sea parcial) entre los orbitales electrónicos <u>localizados</u> de átomos vecinos.
- El signo del canje directo depende principalmente de la ocupación de la banda y del espaciado interatómico. Un largo espaciado favorece un acoplo FM y uno corto acoplo AF.

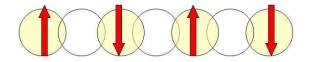


El canje directo no es muy efectivo en TR porque los orbitales semillenos 4f están muy localizados y caen más cerca del núcleo que en el caso de los metales  $3d \Rightarrow$  solapan con más dificultad con los orbitales de los átomos vecinos.





**Curva Bethe-Slater:** cte de canje de los TM vs distancia interatómica, a, normalizada con el radio de la corteza de los  $e^-$  3d, r.

## INTERACCIONES DE INTERCAMBIO O CANJE. TIPOS.


# Supercanje

- Interacción de canje indirecto entre 2 momentos magnéticos localizados de dos átomos no vecinos (sus orbitales no están hibridizados) que está mediada por un ion no magnético situado entre ellos.
- Se las denomina "súper" canje porque las interacciones de canje son normalmente de muy corto alcance.
- El supercanje suele producir orden AF aunque también puede dar orden FM.



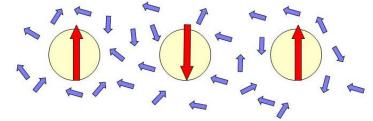


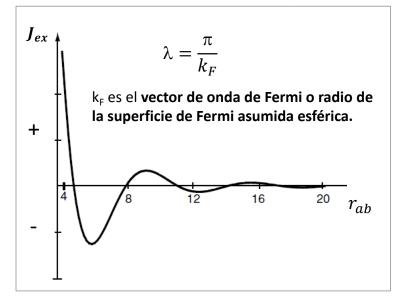
Supercanje AF en MnO



La configuración de acoplo AF de (b) tiene menos energía que la configuración de acoplo FM de (a). Los puentes de oxígeno transmiten la interacción de canje.

### INTERACCIONES DE INTERCAMBIO O CANJE: TIPOS


# Canje indirecto en metales


- En metales, la interacción entre iones magnéticos puede ser mediada por los  $e^-$  de conducción. No hay canje directo entre  $e^-$  localizados.
- Un  $\mu_{atm}$  localizado polariza el espín de un  $e^-$ de conducción y esta polarización produce un acoplo con un  $\mu_{atm}$  localizado vecino a una distancia r.
- Interacción de canje indirecta oscilatoria en  $r_{ab}$  (distancia entre los átomos localizados) y que decae con  $1/r_{ab}^3$ :

$$J_{RKKY} \sim \frac{cos(2k_F r_{ab})}{{r_{ab}}^3}$$

#### RKKY (Ruderman, Kittel, Kasuya and Yosida)

- Dependiendo de la distancia el acoplo puede ser FM o AF.
- Es una interacción de largo alcance y es eficiente cuando el nº de e<sup>-</sup>de conducción es grande.



